您好、欢迎来到现金彩票网!
当前位置:2019全年资料大全正版 > 同步算法 >

通过各传感器数据同步提出的异质多传感器异步量测融合算法

发布时间:2019-06-19 05:30 来源:未知 编辑:admin

  多传感器的集成与融合技术已经成为智能机器与系统领域的一个重要的研究方向。它涉及信息科学的多个领域,是新一代智能信息技术的核心基础之一。由于单传感器不可避免存在不确定或偶然不确定性,缺乏全面性,缺乏鲁棒性,所以偶然的故障就会导致系统失效。多传感器集成与融合技术正是解决这些问题的良方。多个传感器不仅可以描述同一环境特征的多个冗余的信息,而且可以描述不同的环境特征。多个传感器的使用还可以使信息采集和处理过程并行化,不仅可以得到更全面、更准确的信息,而且减少时间和成本,提高整个系统的性能。多传感器集成与融合的特点就是冗余性、互补性、及时性和低成本性。

  本文从建立伪量测方程的角度,提出了一种异质多传感器的异步量测融合算法,该算法是通过在融合中心建立伪量测方程使各传感器的数据同步,然后利用同步的思想进行处理,最后通过计算机仿线 系统模型

  其中,X(k)为k时刻目标的状态向量;kF(k+1,k)为状态转移矩阵;(k+1,k)为过程噪声转移矩阵;V(k)是零均值,高斯白噪声序列,其协方差阵为Q(k)。

  在实际情况下,传感器得到的是三维球坐标系或二维极坐标系的目标量测,即包括斜距r、方位角a和俯仰角e.假设某一传感器的测量方程为:

  其中,W(k)是k时刻的测量高斯白噪声,其相互独立且协方差为R(k),量测向量Z(k)包括斜距r(k)、方位角a(k)、俯仰角e(k),坐标转换如图2所示,由其定义可得:

  若某个传感器j,在该时间间隔内没有提供量测,那么在式(5)中nik=0,这些量测在该时间间隔内是任意分布的。

  令ik(i=1,2,,Nk)为获得第i量测时间与KT之间的间隔,为方便标记,以下KT简写为K,如图2所示,则量测i的测量方程可表示为:

  其中,Z(k),H(k),(k)分别为扩维后的观测矢量、观测矩阵和测量噪声矢量,且有E[(k)]=0,伪量测噪声之间的协方差矩阵为:

  在条件1下,根据伪系统模型(1),(10),通过求解给定伪测量条件下关于目标状态的概率密度函数推导出相应的并行滤波异步数据融合算法:

  则式(12)~(16)构成了异质多传感器扩维滤波融合算法,从中可知,该异步数据融合算法,计算较为简便,但其是在条件1下的滤波融合,故该算法在性能上为次优。

  本文提出一种不同传感器数据的融合算法,即首先是通过建立伪量测方程得到同步化的伪量测数据,之后利用一种扩维滤波的思想得到目标状态的最优估计,由于该算法适用与不同类型传感器异步数据的融合,所以该算法是一种实际算法。多传感器信息融合技术涉及到多学科、多领域,且具有多信息量、多层次、多手段等特点,并在机器人、故障诊断、图像处理等民用领域中,充分发挥了强大的信息处理优势,几乎一切需要信息处理的系统都可以应用信息融合,利用信息融合技术可得到比单一信息源更精确更完全的判断。在将来,多传感器信息融合技术以军事应用为核心,将不断地向工业、农业等领域渗透,进而取得更为广泛的应用。

http://cpfafrance.com/tongbusuanfa/389.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有